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Phase plane of moving discrete breathers
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We study anharmonic localization in a periodic five-atom chain with quadratic-quartic spring potential. We
take advantage of reflection symmetries to eliminate the degeneracies of the harmonic chain and to find
periodic orbits easily. We apply linear stability analysis to measure the frequency of phononlike disturbances
in the presence of breathers, and to analyze the instabilities of breathers. We visualize the phase plane of
breather motion directly, and develop a technique for exciting pinned and moving breathers. We observe
long-lived breathers that move chaotically, and a global transition to chaos that prevents forming moving
breathers at high energi$1063-651X97)10109-X|

PACS numbes): 03.20+i, 63.20.Ry, 63.20.Ls

A body of theoretical work has appeared in the past dein the largeN limit [15], as well as foN=3 and 4. AnN=3
cade on intrinsic localized modes in perfect anharmonic crysperiodic chain is known to be integraljlé]. The authors of
tals [1]. Although the existence of breather periodic orbitsRef. [7] studied the stability of periodic solutions of the
with localized energy has been establish2ll less is known  N=4 periodic chain by evaluating the stability matrix ana-
about the rest of the phase space. In this paper, we use|gijcally using perturbation theory, and verified their results
per_iodic chain of five atoms coupl_ed by quadratic-quarticagainst computer simulations. AN=4 chain with fixed
springs as a model for larger chains and as a testbed f@joyngaries has also been used to explore the phase space and
techniques which can be applied to other systems. We USGovability properties of discrete breathégsg].

reflection symmetries to work in submanifolds in which find- We take advantage of reflection symmetries to explore

ing breather solutions is simplified, and in which breathersubspaces of the complete phase space of the chain; because

solutions can be continued to the phonon limit. We introducebreather periodic orbits lie on these subspaces, we can use

coordinates for visualizing breather motion, exhibiting thesymmetry to find breathers and to follow breather solutions
movability separatrix introduced in RéB], and detect chaos Sa" the way to theE=0 phonon limit. Hamiltoniar(1) re-

in the separatrix region which leads to long-lived breathers ects two kinds of reflection symmetry, which we refer to as
that move erratically. We also apply a linear stability analy- P y Y,

sis to investigate phononlike excitations in the presence ofa%\[/en and odd symmetries after the even- and odd-parity

breather, and to map the stable and unstable manifolds of mggﬁge;? ;?E%ré?]r gigthug%:\]/g:feg'sgﬁfevncif;trse:ngcqlg
unstable breather, developing a technique to launch SyStenrqéflections around a bonghe atternpof ﬁis Iacemre):nts is
atically moving and pinned breathers complementary to ex- P P

isting methodg4]. roughlyg=(— §,1,— 1,;,0) for a even breather on the bond
Introducing our system, the Hamiltonian is between atoms 2 and].3We refer to this property asven
symmetryand the submanifold of the phase space with even

N p2 N symmetry as theven manifoldThe odd-parity periodic orbit
H=> M—+2 U(g,—0g,_1), N=5, (1) hasodd symmetryand odd parity with respect to reflections
=1 2 =1 around an atom [displacements are  roughly
gq=(0,— 3,1,— %,0) for an odd breather centered on atom 3
U(x)= &x2+ &x“, 2) The submanifold of the chain with odd symmetry is thad
2 4 manifold Even and odd symmetries are respected by the
dynamics; if the system starts in the even or odd submani-
under the condition tha,> 0. By scalingg; andp;, we set  fold, it remains there for all time. Even and odd manifolds,
M =K,=K,=1 without loss of generality. The system has of course, exist for each site, but as the chain is translation-
four nontrivial degrees of freedom, since center-of-mass moally invariant the dynamics are identical at all sites. Even and
mentum is conserved. To obtain numerical results, we inteedd symmetry can be used to simplify any sized chain—the
grate the equations of motion f@t) by fifth-order Runge- use of symmetry is particularly advantageous for e 5
Kutta with a fixed step size of IG [5]. Because a high- chain, since the even and odd submanifolds are reduced to
amplitude breather is localized on a few atoms, it istwo degree of freedom systems which are simple to under-
reasonable that our small model captures much of the phystand and visualize.
ics of larger chains. To check this, we transplanted both even Unlike chains with an even number of atorfig,9,10
and odd breather solutions of the=5 chain at energiE=3  there is no energy threshold for breathers in a chain with an
onto aN= 20 chain with all other atoms initially at rest with odd number of atoms. As the energy—0, we expect the
zero displacement; we found that the breather remained leanharmonic chain to be approximated by a harmonic chain
calized for over 1000 breather oscillations without obviousfor short times. FoN=5, the harmonic chain has two de-
loss of amplitude. Our system has been studied extensivelyenerate pairs of normal modes with wave numbers
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k,=nw/5 and frequencies w.,;=2sin(@/5) and
w+,=2 sin(2m/5). The modes with the highektare band- ;
edgemodes. In general, chains with an even number of at- 8.0 .
oms have a single-band-edge mode with wave numher T
and chains with an odd number of atoms have two degener-
ate band edge modes. Since any linear combination of two
phonons with the same frequency is a periodic orbit of a
harmonic chain, each degenerate pair of phonons is associ = ~ ;
ated with a two-parameter family of periodic orbits. This X ‘ , A : .
degenerate situation is structurally unstable, and is shatterec : ‘ S :
when the slightest amount &f, is turned on. Since only one
linear combination of phonons intersects each submanifold,

we can remove the degeneracy by restricting ourselves to ar N

even or odd manifold on which a single-parameter family of e N
periodic orbits survives in the anharmonic system. Specifi- ~ -120 - _03 S 35
cally, in anN odd chain, band-edge phonons with even or qt

odd symmetry deform continuously into even and odd
breathers as energy increases, thus there is no energy thresh-FIG. 1. A Poincaresection on the odd submanifold Bt 230;

old for the formation of breathers. The scenario is distinctthe phase space is dominated by chaotic trajectories, although two
from that of N even chains for which a single-band-edge large islands of regularity are visible. The upper island consists of
phonon which possesses both even and odd symmetry den unstable breather and phononlike disturbances around it, while
formes into an isolated periodic orbit at low energies, andhe lower island is due to a high-amplitude standing wave associ-
undergoes a symmetry-breaking tangent bifurcation at an ergted with then=*1 phonons; resonant islands in the upper half of
ergy proportional taN ! into two different periodic orbits, the plot involve phase locking between the breather and qua-
becoming even and odd breathers, respectij&l,10. siphonons.

Poincaresections are effective for visualizing dynamics
on the submanifolds, and provide a method of findingenergy densityXg(t) used in Eq.(3) is adequate for large
breather solutions. Although restriction to submanifoldschains, for small chaing has the advantage of tracking
should simplify the search for breathers for a system of anyreathers accurately near the seam between site 1 and.site
size, it is very advantageous fbk=5, where the problem is We construct a variable conjugate té by treating
reduced to a one-dimensional root search. Periodic orbit§d=6,— 6,,_, as the velocity of the breather. Tlig=0
manifest as fixed points of the Poimeamap on the surface trigger works well when a breather is localized in the range
of sectiong;=0,g3>0. We plot surfaces of the section by 1<6<5 [12]. Unlike Fig. 1, Fig. 2 is a projection from a
integrating the equation of motion until the trajectory crossesigh-dimensional space to the plane, and is not a complete
the surface of section—at this point we use Newton-Raphson
to solve for the duration of a Runge-Kutta step that lands on 0.4
the surface of section. Fixed points corresponding to breather
periodic orbits lie on they;=0 line and can be found by a
simple one-dimensional root search by the Brent algorithm . o ,
[11]. Both the even and odd manifolds can be visualized by 02 A, ]
plotting (g;,p;); since the submanifolds are two- S N W\ N
dimensional, the result is a complete description of the dy-
namics on a submanifold. Figure 1 is an example. Chaos is&
prevalent in odd manifold sections abdi¥e=1; we have not
observed obvious chaos in the even manifold in the range
0<E< 300 that we have studied.

We use surfaces of sections with a different method of -02r
projection to visualize directly the movability separatrix in-
troduced in Ref[3] in a manner that should be useful for
characterizing moving and pinned modes in other breather
systems. The phase plane of breather motioEatl0 is 1.0 2.0 3.0 4.0 5.0
seen in Fig. 2. The location of the breather is given by the
angle #=argh where

FIG. 2. A Poincaresection using thez=0 trigger and the vari-

N 2 N able 6 illustrating the pendulumlike phase plane of moving breath-
h= 2 &ei(Zﬂ-/N) ng E U(g,—q )ei(Zw/N) [n+ (1/2)] ers. The dotted line is drawn in and illustrates the separatrix; circles
n=1 n=1 n Hn-1 ’ mark stable(even breather solutions, and crosses mark unstable

€)] (odd breather solutions. Roman numerals indicate four regions in
phase space divided by stable and unstable manifolds in which dis-
with N=5. The complex exponential in E¢3) wraps the tinct regular behaviors are observed. In regions | and Ill, the
chain in a circle around the origin in the complex plane,breather moves to the left and right, respectively, while it is pinned
mapping positions to angles. Although the first moment ofat either side of site three in regions Il and IV.
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FIG. 3. Hopping chaos observed&t 50 for a small perturba- breather energy

tion in region Ill. Although energy is localized throughout the du- ] ) -
ration of the simulation, the breather moves erratically. The atoms G- 4. Breather and quasiphonon frequencies from the stability
are visually separated by adding constants to the displacements; tRealrix for even breathers on a five-atom quadratic-quartic chain.
chains are periodic so the bottom atom is adjacent to the top ator]."® Wave number of a quasiphonorkis + (27/5) n.

— 2
picture of the dynamics. The curves in Fig. 2 are consistent X7 =S0Xo+ 0(0X5), “)

with the hypothesi$3,8] that two sets of action-angle vari- : . .

, ; . whereS is the stability matrix
ables exist approximately for breather states; one set is con- With an accurately known periodic orbit, we can deter-
nected with the breather’s spatial position and velocity and i '

f ; ) ne S numerically by making copies of the system and
set of “internal” degree of freedoms associated with breath-perturloing them successively in each position and momen-

ing. As occurs for the pendulum, the position-velocity Con-y,, coordinate, and then evolving each system for tie
served surfaces change topology at the separatrix dividingj 4] T¢ interpret the stability matrix, we first find eigenval-

pinned and moving states. Even the slightest degree of noRes and eigenvectors witisPACK [11]. For a Hamiltonian
integrability breaks conserved surfaces in the separatrix Crésystem,S is a symplectic matrix with certain constraints on
ating a layer of chaosl3]. We refer to the chaos observed in the eigenvalues and eigenvectdds]. In our application,
this separatrix afopping chaosbecause trajectories within eigenvalues values come in three kinds of pairs; elliptic pairs
the separatrix region move erratically in space while remainy =e*'¢  indicating phonon-like excitations in the presence
ing localized for thousands of oscillations or more, as ob-of a breather; hyperbolic painslz)\gl, with X, real indi-
served in Fig. 3. Hopping breathers have been observed igating instabilities; and parabolic paiks,=\,=1, arising
decay, so it is clear that the hopping chaos region of phaskom conserved quantities. In our application two parabolic
space is connected to delocalized chaotic regions; howevepairs arise due to conserved quantities: one pair due to con-
the region of hopping chaos appears to be sufficientlyservation of momentum and another due to conservation of
hemmed in by Kolmogorov-Arnold-MosdKAM ) tori that ~ energy—these uninteresting pairs are removed by automated
hopping chaos is a distinct intermediate-term behavior. Thénspection of eigenvectors.
region of hopping chaos enlarges as energy increases; near Stability analysis confirms that the even breather known
E=20 a global transition to chaos in the phase plane of Figto be stable in long chairjd5] is linearly stable in the five-
2 appears to occur, and it becomes impossible to create moatom chain; no hyperbolic eigenvalues appear in the energy
ing modes; only the islands of near integrability correspond+ange fromE=0-200. If a stable breather is infinitesimally
ing to pinning on a bond remain. Hopping chaos is probablyperturbed, one excites phononlike disturbances that we call
less robust in longer chains, since longer chains have momuasiphononsby investigating quasiphonons one can study
degrees of freedom for resonances to occur with and fothe interaction between a breather and phonons, crucial for
energy to be radiated into. understanding quantum and thermal fluctuations around
Numerical linear stability analysis gives a local picture of breathers[16]. We determine the frequencies of qua-
the phase space around a periodic orbit complementary to trephonons from eigenvalues of the stability matrix; Fig. 4
more global views of previous sections. With stability analy-plots quasiphonon frequencies as a function of breather en-
sis we examine phononlike excitations in the presence oérgy. To test the accuracy of our technique, we excited qua-
breathers, and analyze the instabilities of breathers. Let usphonons by making a small change in the=3 and 50
write the state of the system as a phase-space vectbreather solutions; quasiphonon frequencies appeared as
x=(q,p); let xy be a point on a periodic orbit with period peaks in the power spectrum determined by running the sys-
We make an infinitesimal chang® in the initial conditions, tem until t=3000, and taking the fast Fourier transform of
launching the system at tinie=0 in statex=x,+ 6x. When  one atom’s position as a function of time. The two methods
we observe the system at tinte=T the system is in state agree to within one part in 1d, the bin size of the power
XT=Xo+ 6X7. To linear order indx, spectrum. Quasiphonon frequencies vary smoothly with
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breather energy, and converge on the true phonon frequeran launch a breather that travels either to the left or to right,
cies as the energy of the breather goes to zero. Therefore veg that remains pinned while rocking slightly to the left or
label quasiphonons by the symmetry they uphold, and theight of the odd breather location. The roman numerals in
wave numberk, of the phonon they become in thie—0  Fig. 2 characterize the direction of perturbation, and are the
limit, a scheme that should remain applicable for qua-standard four quadrants, with theaxis pointing in the di-
siphonons in larger chains and higher dimensions. &  rection of the unstable eigenvector and thaxis pointing in
quasiphonon is tangent to the phase plane of breather Mene direction of the stable eigenvector, adopting the conven-
tion; a small excitation of the=2 quasiphonon causes the {jon that theq, component of both eigenvectors is positive.
breather to rock around one bond, while a large excitationrg gptain reliable results, it is necessary to add a sufficiently

causes the brﬁathejr to break free and move, as has beghge perturbation so as to clear the region of hopping chaos
observed in ap” lattice [4]. in the separatrix region.
Perturbation of a stable breather has been used to create summary, we found that tHé=>5 chain exhibits much

moving breathers in & lattice [4]; we found an alternate of the phenomenology of larger chains, and can be used as
method of creating pinned and gliding breathers by perturbpoty 3 model of localization and a testing ground for tech-

ing an unstable breather. As is known for large chall,  hiques. We applied the numerical stability analysis so as to
the odd breather is linearly unstable for all energies; the linyheasure quasiphonon frequencies in the presence of a

ear instability does not cause the breather to decay, but inseather and to design perturbations that create either mov-
stead causes the breather to move. The eigenvecto& of g or pinned modes starting from either a stable or an un-
with eigenvalues less than and greater than one point, respegmple breather. Chaos exists in the movability separatrix,
tively, decay into stable and unstable r_nanlfolds, and define gg pecomes increasingly prevalent as the energy increases;
plane tangent to the phase plane of Fig. 2. As the energy of gjobal transition to chaos neir=20 makes it impossible

the odd breather goes to zero, the unstable mode eigenvegy |aunch moving breathers. With appropriate coordinates we

tors converge on the even band-edge phonon. The tangephye been able to directly visualize the phase plane of
plane is divided into four quadrants by stable and unstablgeather motion.

manifolds; distinct regular behaviors are observed for pertur-

bations directed into each quadrant, as illustrated by the |would like to thank C. Henley for suggesting E§) and
drawn-in separatrix in Fig. 2—the unstable manifolds of another useful discussions, as well as Rongji Lai, S. A. Kiselev,
odd breather at one site feed into the stable manifolds of oddnd A. J. Sievers. This work was supported by NSF Grant
breathers at neighboring sites. By choosing a quadrant wido. DMR-9612304.
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