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Phase plane of moving discrete breathers
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~Received 27 May 1997!

We study anharmonic localization in a periodic five-atom chain with quadratic-quartic spring potential. We
take advantage of reflection symmetries to eliminate the degeneracies of the harmonic chain and to find
periodic orbits easily. We apply linear stability analysis to measure the frequency of phononlike disturbances
in the presence of breathers, and to analyze the instabilities of breathers. We visualize the phase plane of
breather motion directly, and develop a technique for exciting pinned and moving breathers. We observe
long-lived breathers that move chaotically, and a global transition to chaos that prevents forming moving
breathers at high energies.@S1063-651X~97!10109-X#

PACS number~s!: 03.20.1i, 63.20.Ry, 63.20.Ls
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A body of theoretical work has appeared in the past
cade on intrinsic localized modes in perfect anharmonic c
tals @1#. Although the existence of breather periodic orb
with localized energy has been established@2#, less is known
about the rest of the phase space. In this paper, we u
periodic chain of five atoms coupled by quadratic-qua
springs as a model for larger chains and as a testbed
techniques which can be applied to other systems. We
reflection symmetries to work in submanifolds in which fin
ing breather solutions is simplified, and in which breath
solutions can be continued to the phonon limit. We introdu
coordinates for visualizing breather motion, exhibiting t
movability separatrix introduced in Ref.@3#, and detect chaos
in the separatrix region which leads to long-lived breath
that move erratically. We also apply a linear stability ana
sis to investigate phononlike excitations in the presence
breather, and to map the stable and unstable manifolds o
unstable breather, developing a technique to launch sys
atically moving and pinned breathers complementary to
isting methods@4#.

Introducing our system, the Hamiltonian is
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under the condition thatK4.0. By scalingqi andpi , we set
M5K25K451 without loss of generality. The system h
four nontrivial degrees of freedom, since center-of-mass m
mentum is conserved. To obtain numerical results, we in
grate the equations of motion for~1! by fifth-order Runge-
Kutta with a fixed step size of 1023 @5#. Because a high-
amplitude breather is localized on a few atoms, it
reasonable that our small model captures much of the p
ics of larger chains. To check this, we transplanted both e
and odd breather solutions of theN55 chain at energyE53
onto aN520 chain with all other atoms initially at rest wit
zero displacement; we found that the breather remained
calized for over 1000 breather oscillations without obvio
loss of amplitude. Our system has been studied extensi
561063-651X/97/56~3!/3657~4!/$10.00
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in the large-N limit @15#, as well as forN53 and 4. AnN53
periodic chain is known to be integrable@6#. The authors of
Ref. @7# studied the stability of periodic solutions of th
N54 periodic chain by evaluating the stability matrix an
lytically using perturbation theory, and verified their resu
against computer simulations. AnN54 chain with fixed
boundaries has also been used to explore the phase spac
movability properties of discrete breathers@3,8#.

We take advantage of reflection symmetries to expl
subspaces of the complete phase space of the chain; be
breather periodic orbits lie on these subspaces, we can
symmetry to find breathers and to follow breather solutio
all the way to theE50 phonon limit. Hamiltonian~1! re-
spects two kinds of reflection symmetry, which we refer to
even and odd symmetries after the even- and odd-par
breathers in prior literature@15#. The displacements and mo
menta of aneven breatherhave even parity with respect t
reflections around a bond@the pattern of displacements

roughly q5(2 1
6 ,1,21,1

6 ,0) for a even breather on the bon
between atoms 2 and 3#. We refer to this property aseven
symmetry, and the submanifold of the phase space with ev
symmetry as theeven manifold. The odd-parity periodic orbit
hasodd symmetry, and odd parity with respect to reflection
around an atom @displacements are roughl

q5(0,2 1
2 ,1,2 1

2 ,0) for an odd breather centered on atom#.
The submanifold of the chain with odd symmetry is theodd
manifold. Even and odd symmetries are respected by
dynamics; if the system starts in the even or odd subm
fold, it remains there for all time. Even and odd manifold
of course, exist for each site, but as the chain is translat
ally invariant the dynamics are identical at all sites. Even a
odd symmetry can be used to simplify any sized chain—
use of symmetry is particularly advantageous for theN55
chain, since the even and odd submanifolds are reduce
two degree of freedom systems which are simple to und
stand and visualize.

Unlike chains with an even number of atoms@7,9,10#
there is no energy threshold for breathers in a chain with
odd number of atoms. As the energyE→0, we expect the
anharmonic chain to be approximated by a harmonic ch
for short times. ForN55, the harmonic chain has two de
generate pairs of normal modes with wave numb
3657 © 1997 The American Physical Society
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3658 56PAUL A. HOULE
kn5 np/5 and frequencies v6152 sin(p/5) and
v6252 sin(2p/5). The modes with the highestk areband-
edgemodes. In general, chains with an even number of
oms have a single-band-edge mode with wave numbep,
and chains with an odd number of atoms have two dege
ate band edge modes. Since any linear combination of
phonons with the same frequency is a periodic orbit o
harmonic chain, each degenerate pair of phonons is as
ated with a two-parameter family of periodic orbits. Th
degenerate situation is structurally unstable, and is shatt
when the slightest amount ofK4 is turned on. Since only one
linear combination of phonons intersects each submanif
we can remove the degeneracy by restricting ourselves t
even or odd manifold on which a single-parameter family
periodic orbits survives in the anharmonic system. Spec
cally, in an N odd chain, band-edge phonons with even
odd symmetry deform continuously into even and o
breathers as energy increases, thus there is no energy th
old for the formation of breathers. The scenario is disti
from that of N even chains for which a single-band-ed
phonon which possesses both even and odd symmetry
formes into an isolated periodic orbit at low energies, a
undergoes a symmetry-breaking tangent bifurcation at an
ergy proportional toN21 into two different periodic orbits,
becoming even and odd breathers, respectively,@7,9,10#.

Poincare´ sections are effective for visualizing dynami
on the submanifolds, and provide a method of findi
breather solutions. Although restriction to submanifo
should simplify the search for breathers for a system of
size, it is very advantageous forN55, where the problem is
reduced to a one-dimensional root search. Periodic or
manifest as fixed points of the Poinca´re map on the surface
of sectionq350,q̇3.0. We plot surfaces of the section b
integrating the equation of motion until the trajectory cros
the surface of section—at this point we use Newton-Raph
to solve for the duration of a Runge-Kutta step that lands
the surface of section. Fixed points corresponding to brea
periodic orbits lie on theq150 line and can be found by
simple one-dimensional root search by the Brent algorit
@11#. Both the even and odd manifolds can be visualized
plotting (q1 ,p1); since the submanifolds are two
dimensional, the result is a complete description of the
namics on a submanifold. Figure 1 is an example. Chao
prevalent in odd manifold sections aboveE51; we have not
observed obvious chaos in the even manifold in the ra
0,E,300 that we have studied.

We use surfaces of sections with a different method
projection to visualize directly the movability separatrix i
troduced in Ref.@3# in a manner that should be useful fo
characterizing moving and pinned modes in other brea
systems. The phase plane of breather motion atE510 is
seen in Fig. 2. The location of the breather is given by
angleu5argh where

h5 (
n51

N pn
2

2
ei ~2p/N! n1 (

n51

N

U~qn2qn21!ei ~2p/N! @n1 ~1/2!#,

~3!

with N55. The complex exponential in Eq.~3! wraps the
chain in a circle around the origin in the complex plan
mapping positions to angles. Although the first moment
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energy densityXE(t) used in Eq.~3! is adequate for large
chains, for small chainsu has the advantage of trackin
breathers accurately near the seam between site 1 and siN.
We construct a variable conjugate tou by treating
du5un2un21 as the velocity of the breather. Theq350
trigger works well when a breather is localized in the ran
1,u,5 @12#. Unlike Fig. 1, Fig. 2 is a projection from a
high-dimensional space to the plane, and is not a comp

FIG. 1. A Poincare´ section on the odd submanifold atE5230;
the phase space is dominated by chaotic trajectories, although
large islands of regularity are visible. The upper island consists
an unstable breather and phononlike disturbances around it, w
the lower island is due to a high-amplitude standing wave ass
ated with then561 phonons; resonant islands in the upper half
the plot involve phase locking between the breather and q
siphonons.

FIG. 2. A Poincare´ section using theq350 trigger and the vari-
ableu illustrating the pendulumlike phase plane of moving brea
ers. The dotted line is drawn in and illustrates the separatrix; cir
mark stable~even! breather solutions, and crosses mark unsta
~odd! breather solutions. Roman numerals indicate four region
phase space divided by stable and unstable manifolds in which
tinct regular behaviors are observed. In regions I and III,
breather moves to the left and right, respectively, while it is pinn
at either side of site three in regions II and IV.
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56 3659PHASE PLANE OF MOVING DISCRETE BREATHERS
picture of the dynamics. The curves in Fig. 2 are consis
with the hypothesis@3,8# that two sets of action-angle var
ables exist approximately for breather states; one set is
nected with the breather’s spatial position and velocity an
set of ‘‘internal’’ degree of freedoms associated with brea
ing. As occurs for the pendulum, the position-velocity co
served surfaces change topology at the separatrix divid
pinned and moving states. Even the slightest degree of n
integrability breaks conserved surfaces in the separatrix
ating a layer of chaos@13#. We refer to the chaos observed
this separatrix ashopping chaos, because trajectories withi
the separatrix region move erratically in space while rema
ing localized for thousands of oscillations or more, as o
served in Fig. 3. Hopping breathers have been observe
decay, so it is clear that the hopping chaos region of ph
space is connected to delocalized chaotic regions; howe
the region of hopping chaos appears to be sufficien
hemmed in by Kolmogorov-Arnold-Moser~KAM ! tori that
hopping chaos is a distinct intermediate-term behavior. T
region of hopping chaos enlarges as energy increases;
E520 a global transition to chaos in the phase plane of F
2 appears to occur, and it becomes impossible to create m
ing modes; only the islands of near integrability correspo
ing to pinning on a bond remain. Hopping chaos is proba
less robust in longer chains, since longer chains have m
degrees of freedom for resonances to occur with and
energy to be radiated into.

Numerical linear stability analysis gives a local picture
the phase space around a periodic orbit complementary to
more global views of previous sections. With stability ana
sis we examine phononlike excitations in the presence
breathers, and analyze the instabilities of breathers. Le
write the state of the system as a phase-space ve
x5(q,p); let x0 be a point on a periodic orbit with periodT.
We make an infinitesimal changedx in the initial conditions,
launching the system at timet50 in statex5x01dx. When
we observe the system at timet5T the system is in state
xT5x01dxT . To linear order indx,

FIG. 3. Hopping chaos observed atE550 for a small perturba-
tion in region III. Although energy is localized throughout the d
ration of the simulation, the breather moves erratically. The ato
are visually separated by adding constants to the displacement
chains are periodic so the bottom atom is adjacent to the top a
nt
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whereS is thestability matrix.
With an accurately known periodic orbit, we can dete

mine S numerically by making copies of the system a
perturbing them successively in each position and mom
tum coordinate, and then evolving each system for timeT
@14#. To interpret the stability matrix, we first find eigenva
ues and eigenvectors withEISPACK @11#. For a Hamiltonian
system,S is a symplectic matrix with certain constraints o
the eigenvalues and eigenvectors@13#. In our application,
eigenvalues values come in three kinds of pairs; elliptic pa
l5e6 if, indicating phonon-like excitations in the presen
of a breather; hyperbolic pairsl15l2

21, with l1 real indi-
cating instabilities; and parabolic pairsl15l251, arising
from conserved quantities. In our application two parabo
pairs arise due to conserved quantities: one pair due to
servation of momentum and another due to conservation
energy—these uninteresting pairs are removed by autom
inspection of eigenvectors.

Stability analysis confirms that the even breather kno
to be stable in long chains@15# is linearly stable in the five-
atom chain; no hyperbolic eigenvalues appear in the ene
range fromE50 – 200. If a stable breather is infinitesimal
perturbed, one excites phononlike disturbances that we
quasiphonons; by investigating quasiphonons one can stu
the interaction between a breather and phonons, crucia
understanding quantum and thermal fluctuations aro
breathers @16#. We determine the frequencies of qu
siphonons from eigenvalues of the stability matrix; Fig.
plots quasiphonon frequencies as a function of breather
ergy. To test the accuracy of our technique, we excited q
siphonons by making a small change in theE53 and 50
breather solutions; quasiphonon frequencies appeared
peaks in the power spectrum determined by running the
tem until t53000, and taking the fast Fourier transform
one atom’s position as a function of time. The two metho
agree to within one part in 1024, the bin size of the power
spectrum. Quasiphonon frequencies vary smoothly w

s
the
m.

FIG. 4. Breather and quasiphonon frequencies from the stab
matrix for even breathers on a five-atom quadratic-quartic ch
The wave number of a quasiphonon isk56(2p/5) n.
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3660 56PAUL A. HOULE
breather energy, and converge on the true phonon freq
cies as the energy of the breather goes to zero. Therefor
label quasiphonons by the symmetry they uphold, and
wave numberkn of the phonon they become in theE→0
limit, a scheme that should remain applicable for qu
siphonons in larger chains and higher dimensions. Then52
quasiphonon is tangent to the phase plane of breather
tion; a small excitation of then52 quasiphonon causes th
breather to rock around one bond, while a large excitat
causes the breather to break free and move, as has
observed in af4 lattice @4#.

Perturbation of a stable breather has been used to c
moving breathers in af4 lattice @4#; we found an alternate
method of creating pinned and gliding breathers by pertu
ing an unstable breather. As is known for large chains@15#,
the odd breather is linearly unstable for all energies; the
ear instability does not cause the breather to decay, bu
stead causes the breather to move. The eigenvectorsS
with eigenvalues less than and greater than one point, res
tively, decay into stable and unstable manifolds, and defin
plane tangent to the phase plane of Fig. 2. As the energ
the odd breather goes to zero, the unstable mode eigen
tors converge on the even band-edge phonon. The tan
plane is divided into four quadrants by stable and unsta
manifolds; distinct regular behaviors are observed for per
bations directed into each quadrant, as illustrated by
drawn-in separatrix in Fig. 2—the unstable manifolds of
odd breather at one site feed into the stable manifolds of
breathers at neighboring sites. By choosing a quadrant
P.
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can launch a breather that travels either to the left or to rig
or that remains pinned while rocking slightly to the left
right of the odd breather location. The roman numerals
Fig. 2 characterize the direction of perturbation, and are
standard four quadrants, with thex axis pointing in the di-
rection of the unstable eigenvector and they axis pointing in
the direction of the stable eigenvector, adopting the conv
tion that theq1 component of both eigenvectors is positiv
To obtain reliable results, it is necessary to add a sufficien
large perturbation so as to clear the region of hopping ch
in the separatrix region.

In summary, we found that theN55 chain exhibits much
of the phenomenology of larger chains, and can be use
both a model of localization and a testing ground for tec
niques. We applied the numerical stability analysis so as
measure quasiphonon frequencies in the presence
breather and to design perturbations that create either m
ing or pinned modes starting from either a stable or an
stable breather. Chaos exists in the movability separa
and becomes increasingly prevalent as the energy increa
a global transition to chaos nearE520 makes it impossible
to launch moving breathers. With appropriate coordinates
have been able to directly visualize the phase plane
breather motion.
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